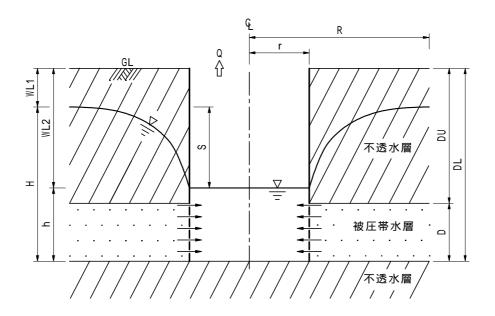
工事名称: 調整池建設工事

工区名称: 第1工区

地下水位低下工設計計算書 (ディープウェル工法)

平成14年12月1日

建設株式会社


<< 特記事項 >>

- 1 透水係数の設定方法
 - 現場揚水試験(多孔試験)の結果 K=5.0E-2cm/sec を採用する。
- 2 地下水位の設定方法
 - 現場揚水試験時の初期水位 GL-2.0m を採用する。

1 設計方法

(1)揚水量の算出

井戸の平衡(定常)式を適用する。

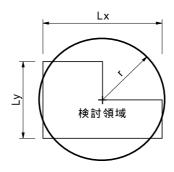
$$Q = \frac{2 \times (H - h)}{\ln (R \div r)} \times 60$$

Q: 排水量 (m³/min)
K: 透水係数 (cm/sec)
D: 带水層厚 (m)
H: 自然水位高 (m)
h: 所要低下水位高 (m)
R: 影響半径 (m)
r: 仮想井戸半径 (m)

(解説1)帯水層下面深度の設定方法

粘性土層(シルト、粘土)および粘性土を多く含有する砂質土層(シルト質、粘土質の砂質土)を設計上の不透水層とする。

不透水層が存在しない場合は、経験式により不透水層深度を設定する。

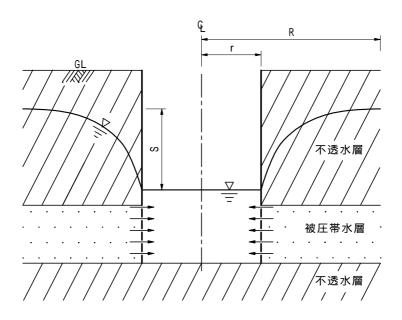

経験式 : DL = (WL2 - WL1) × 3 + WL1

(解説2)透水係数の設定方法

現場揚水試験が実施されている場合は、試験結果を採用する。 現場透水試験結果は真値よりも過小側の値となる傾向があるので、 土の粒度分布に基づく推定値などを参考にして適正値を設定する。 なお、重力排水の適用領域は K = 2.6 × 10⁻³cm/sec 以上とする。

(2) 仮想井戸半径の算出

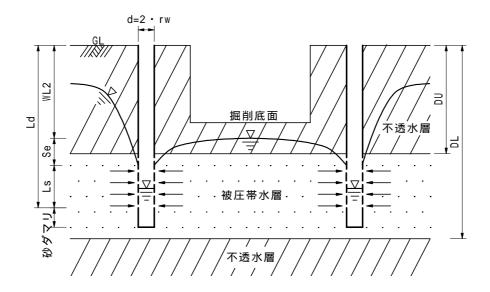
検討領域を等価面積円および等価周長円に置換え、最大値を仮想井戸半径とする。


r1 = (Lx x Ly ÷) ・・・ 等価面積円
r2 = (Lx + Ly) ÷ ・・・ 等価周長円
r = r1 および r2 の最大値

Lx: 検討領域長 (m)
Ly: 検討領域幅 (m)
r1: 仮想井戸半径(等価面積円) (m)
r2: 仮想井戸半径(等価周長円) (m)

(m)

r: 仮想井戸半径


(3)影響半径の算出

シーハルトの式を適用する。

R = 3000 x S x (K ÷ 100)

R : 影響半径 (m)
S : 水位低下量 (m)
K : 透水係数 (cm/sec)

シーハルトの式を適用する。

$$qw = 2 \times rw \times Ls \times (K \div 100) \div 15 \times 60$$

(解説1)ストレーナ下端深度の設定方法

ディープウェル揚水能力はディープウェル深度に比例して増加し、揚水能力が最大となるストレーナ下端深度は次式で算出される。

Ld = DL

(解説2)有効ストレーナ長減少量の設定方法

複数のディープウェルを同時に稼働させる場合には、ウエルの相互干渉 作用により有効ストレーナ長が減少する。 この設計は概略設計のため、次式を参考に設定する。

Se =
$$(Ld - WL2) \times (20\% \sim 30\%)$$

なお、減少量を定量的に評価するためには「群井の式」による詳細設計を行わなければならない。

(解説3)ディープウェル口径の設定方法

ディープウェル口径はディープウェル掘削工法によって変動する。

文献 1: 下水道用設計積算要領(日本下水道協会)

掘削工法	ディープウェル口径
大口径ボーリング掘削工法	300mm、 400mm
オールケーシング掘削工法	500mm、 600mm

文献 2: 根切り工事と地下水(地盤工学会)

「普通、削孔径は1~1.2m、ストレーナ管の径は0.6m・・・・・・削孔方法が制約される場合は異なる。」

(5)ディープウェル所要本数の算出

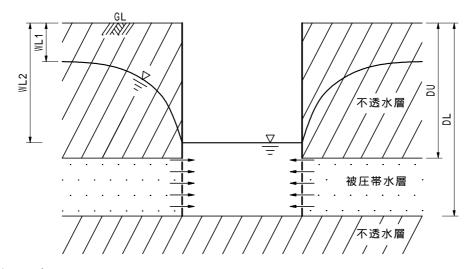
次式により算出する。

 $N = Q \div qw \times Fs$

N : ディープウェル所要本数 (本) (m^3/min) Q:排水量 qw: ディープウェル揚水能力 Fs: 安全率 (m^3/min)

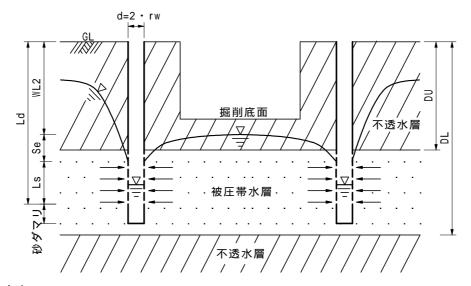
(解説1)文献に記載されている安全率

図書名	安全率	記事
仮設構造物の計画と施工(土木学会)	Fs=2.0	計算例に示されている
根切り工事と地下水(地盤工学会)	Fs=1.0	群井の式による詳細設計を行う


2 設計条件

(1)検討領域の平面寸法

項目名	記号	単位	数値	記事
検討領域長	Lx	m	30.00	
検討領域幅	Ly	m	50.00	


(2)土質定数

項目名	記号	単位	数値	記事
自然水位	WL1	GL-m	2.00	
所要低下水位	WL2	GL-m	6.00	
帯水層上面深度	DU	GL-m	7.00	
帯水層下面深度	DL	GL-m	13.00	
透水係数	K	cm/sec	5.00E-02	K 2.6×10^{-3} cm/sec

(3)ディープウェルの構造寸法

項目名	記号	単位	数値	記事
ストレーナ下端深度	Ld	GL-m	13.00	Ld DL
(Ld - WL2)	Ld-WL2	m	7.00	= 13.00m - 6.00m
有効ストレーナ長減少量	Se	m	2.00	
ディープウェル口径	d	m	0.60	

(4)安全率

項目名	記号	単位	数値	記事
安全率	Fs		2.00	Fs 1.0

3 ディープウェルの設計

(1)仮想井戸半径 r(m)

r1 =
$$(Lx \times Ly \div)$$

= $(30.00 \times 50.00 \div)$
= 21.85 m

$$r2 = (Lx + Ly) \div$$

= (30.00 + 50.00) ÷
= 25.46 m

$$r = 25.46 \text{ m}$$
 $(r2 > r1)$

(2)自然水位高 H(m)

$$H = DL - WL1$$

= 13.00 - 2.00
= 11.00 m

(3)所要低下水位高 h(m)

$$h = DL - WL2$$

$$= 13.00 - 6.00$$

$$= 7.00 m$$

(4)水位低下量 S(m)

$$S = H - h$$

= 11.00 - 7.00
= 4.00 m

(5) 帯水層厚 D(m)

$$D = DL - DU$$
= 13.00 - 7.00
= 6.00 m

(6)影響半径 R(m)

(7)井戸公式適用可否の判定

In (R
$$\div$$
 r) = In (268.33 \div 25.46)
= 2.36 1

判定結果: In (R ÷ r) 1 を満足するので井戸公式が適用できる。

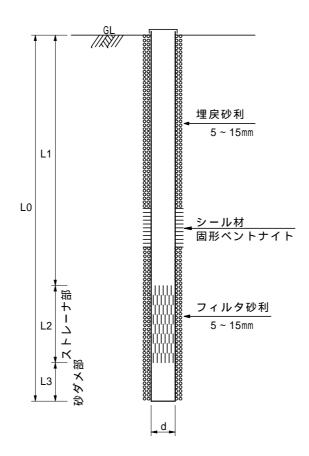
(8)排水量 Q(m³/min)

$$Q = \frac{2 \times (K \div 100 \times D \times (H - h))}{\ln (R \div r)} \times 60$$

$$= \frac{2 \times (5.00E - 02 \div 100 \times 6.00 \times (11.00 - 7.00))}{\ln (268.33 \div 25.46)} \times 60$$

 $= 1.92 \text{ m}^3/\text{min}$

(9)ディープウェル揚水能力 qw (m³/min)


1) 有効ストレーナ長 Ls (m)

Ls = Ld - (
$$WL2 + Se$$
)
= 13.00 - (6.00 + 2.00)
= 5.00 m

2) ディープウェル揚水能力 qw (m³/min)

$$qw = 2 \times x \quad rw \times Ls \times (K \div 100) \div 15 \times 60$$

= $2 \times x \quad 0.30 \times 5.00 \times (5.00E-02 \div 100) \div 15 \times 60$
= $0.84 \text{ m}^3/\text{min}$

(10)ディープウェル所要本数 N(本)

	記号	単位	数值
ディープウェル全長	L0	m	14.00
頭部鋼管長	L1	m	7.00
ストレーナ長	L2	m	6.00
砂ダメ長	L3	m	1.00
ディープウェル口径	d	m	0.60
ディープウェル本数	N	本	5